BCR-ABL-induced deregulation of the IL-33/ST2 pathway in CD34+ progenitors from chronic myeloid leukemia patients.
نویسندگان
چکیده
Although it is generally acknowledged that cytokines regulate normal hematopoiesis in an autocrine/paracrine fashion, their possible role in chronic myelogenous leukemia (CML) and resistance to imatinib mesylate treatment remain poorly investigated. Here, we report that CD34(+) progenitors from patients with CML at diagnosis are selectively targeted by the cytokine/alarmin interleukin (IL)-33. Indeed, CML CD34(+) progenitors upregulate their cell surface expression of the IL-33-specific receptor chain ST2, proliferate and produce cytokines in response to IL-33, conversely to CD34(+) cells from healthy individuals. Moreover, ST2 overexpression is normalized following imatinib mesylate therapy, whereas IL-33 counteracts in vitro imatinib mesylate-induced growth arrest in CML CD34(+) progenitors via reactivation of the STAT5 pathway, thus supporting the notion that IL-33 may impede the antiproliferative effects of imatinib mesylate on CD34(+) progenitors in CML. Clinically, the levels of circulating soluble ST2, commonly considered a functional signature of IL-33 signaling in vivo, correlate with disease burden. Indeed, these elevated peripheral concentrations associated with a high Sokal score predictive of therapeutic outcome are normalized in patients in molecular remission. Finally, we evidenced a facilitating effect of IL-33 on in vivo maintenance of CD34(+) progenitors from patients with CML by using xenotransplant experiments in immunodeficient NOG mice, and we showed that engraftment of mouse BCR-ABL-transfected bone marrow progenitors was less efficient in IL-33-deficient mice compared with wild-type recipients. Taken together, our results provide evidence that IL-33/ST2 signaling may represent a novel cytokine-mediated mechanism contributing to CML progenitor growth and support a role for this pathway in CML maintenance and imatinib mesylate resistance.
منابع مشابه
Frequency of BCR-ABL Fusion Transcripts in Iranian Azeri Turkish patients with Chronic Myeloid Leukemia
Background: The Philadelphia chromosome (Ph) characterized by t (9; 22) (q34; q11.2) is a reciprocal translocation giving rise to a chimeric BCR-ABL fusion gene. Incidence of Ph chromosome is over 98% in Patients with Chronic Myeloid Leukemia (CML) and around 20% in acute lymphoblastic leukemia (ALL). The finding of this fusion gene is essential for diagnosis of CML by detection of various fusi...
متن کاملPotential Role of Notch Signalling in CD34+ Chronic Myeloid Leukaemia Cells: Cross-Talk between Notch and BCR-ABL
Notch signalling is critical for haemopoietic stem cell (HSC) self-renewal and survival. The role of Notch signalling has been reported recently in chronic myeloid leukaemia (CML) - a stem cell disease characterized by BCR-ABL tyrosine kinase activation. Therefore, we studied the relationship between BCR-ABL and Notch signalling and assessed the expression patterns of Notch and its downstream t...
متن کاملDetection of abl/bcr Fusion Gene in Patients Affected by Chronic Myeloid Leukaemia by Dual-Colour Interphase Fluorescence in situ Hybridisation
Conventional cytogenetic is the standard technique for detection of Philadelphia (Ph) chromosome in chronic myeloid leukemia (CML). Evaluation of abelson murine leukemia/breakpoint cluster region (abl/bcr) fusion using dual-colour fluorescence in situ hybridization (D-FISH) is an alternative approach allowing rapid and reliable detection of the disease. We employed the technique of interphase D...
متن کاملDasatinib targets chronic myeloid leukemia-CD34+ progenitors as effectively as it targets mature cells.
Dasatinib is effective in most chronic phase chronic myeloid leukemia patients both in first-line therapy and following imatinib failure. While imatinib uptake into CD34(+) cells is low compared to mononuclear cells, few data evaluate how well dasatinib targets primitive CML cells. This study compares intracellular concentration of dasatinib and Bcr-Abl kinase inhibition in CML-CD34(+) progenit...
متن کاملBcr-abl Silencing by Specific Small-Interference RNA Expression Vector as a Potential Treatment for Chronic Myeloid Leukemia
Background: RNA interference (RNAi) is the mechanism of gene silencing-mediated messenger RNA degradation by small interference RNA (siRNA), which becomes a powerful tool for in vivo research, especially in the areas of cancer. In this research, the potential use of an expression vector as a specific siRNA producing tool for silencing of Bcr-abl in K562 cell line has been investigated. Methods:...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cancer research
دوره 74 10 شماره
صفحات -
تاریخ انتشار 2014